Agency Dispersion Modeling Capabilities

Jerome D. Fast
Pacific Northwest National Laboratory

Workshop of Multiscale Atmospheric Dispersion Modeling within the Federal Community

June 6-8 2000, Silver Springs, Maryland

Dispersion Modeling within ASP

Dispersion modeling is performed by scientists in two research programs within the DOE's Atmospheric Sciences Program (ASP):

- Environmental Meteorology Program (EMP) focuses on the transport of energy-related materials through the atmosphere
- Atmospheric Chemistry Program (ACP) focuses on the chemical transformation of tropospheric energy-related materials on regional, continental, and global scales, the influence of aerosols on air quality and climate, and the characterization and modeling of fine particles

Models used in EMP and ACP

Three types of models are used within EMP and ACP:

Meteorological Models

- Mesoscale
- Large Eddy Simulation (LES)
- Direct Numerical Simulation (DNS)

Dispersion Models

- Lagrangian
- Eulerian

Chemical Models

- Box
- Regional
- Global

Meteorological Models

Mesoscale - "widely used codes" within atmospheric community

- RAMS CSU Regional Atmospheric Modeling System, MM5 -NCAR/PSU Mesoscale Model, ARPS - OU Advanced Regional Prediction System, ETA - NCEP's operational forecast model
- vertical diffusion parameterized for the prognostic momentum, heat, and moisture equations
- turbulence parameterization usually based on K-theory and prognostic TKE equation (e.g. Mellor-Yamada closure)

LES - "research codes"

- grid ~ 10 100 m to resolve small-scale turbulent motions
- high frequency end of the turbulence spectrum parameterized

DNS - "research codes"

- explicitly resolves turbulence, grid ~ 1 mm
- simulations performed using low Re << real atmosphere, but results appear to be independent of Re

Dispersion Models

Two techniques are used to simulate the transport and diffusion of a passive scalar:

Lagrangian

- dispersion simulated by tracking a large number of particle positions based on mean and subgrid-scale velocity components
- employ the Langevin stochastic differential equation

Eulerian

- dispersion simulated by using a continutity equation for a passive scalar on a fixed grid
- employ K-theory for vertical diffusion

Meteorological parameters provided by mesoscale models (also by diagnostic mass-consistent models in the past). Dispersion models are often simply used to identify and illustrate the interaction of various meteorological processes.

The short of the state of the s

Chemical Models

A continuity equation is used for each trace gas specie that includes chemical production/destruction, emission, and deposition terms. K-theory usually employed for vertical diffusion.

high

complexity of chemistry

Box

- "research codes", hundreds of species and reactions
- Langrangian, assume air parcel travels with wind

Regional

- STEM (University of Iowa), PEGASUS (PNNL)
- meteorological fields imported from mesoscale model at specified intervals (e.g. ~ 1-h intervals)

ow Global

- IMPACT (LLNL). SUNY-CCM3 (SUNY-Albany), MOZART (NCAR), GRANTOUR (UM), GChM (PNNL and BNL)
- meteorological fields usually imported from large-scale analyses (e.g. ~ 6-h intervals)

low low

Model Evaluation

Meteorological Models

- EMP field campaigns Brush Creek (1985), Rocky Flats (1991), Mexico City (1997), Salt Lake City (2000)
- wind, temperature, humidity averaged over 15 min to 1-h periods from radar wind profilers, sodars, airsondes, and surface stations

Dispersion Models

- EMP SF₆ experiments Brush Creek (1985), Rocky Flats (1991)
- hourly average tracer concentrations

Chemical Models

- ACP field campaigns NARE (1992, 93), SOS (1995, 99), NARSTO (1995, 96), Phoenix (1998), NE-OPS (1999), CCOS (2000), TexAQS (2000)
- various trace gas species (O₃, NO_x, NO_y, CO, H₂O₂, HCHO, PAN) and aerosols at 10-s intervals or averages over longer periods
- surface instrumentation, research aircraft, ozonesondes, and routine air-quality monitoring networks

Horizontal and Vertical Distribution of Ozone Simulated by PEGASUS

Observed and Simulated Ozone and NOx along G-1 Flight Path

Model Users and Products

EMP and ACP scientists affiliated with:

- DOE National Laboratories (Argonne, Brookhaven, Laurence Livermore, Los Alamos, and Pacific Northwest)
- other government laboratories (NOAA-ATDD, NOAA-ETL, NCAR)
- private institutions (Colorado Research Associates, Desert Research Institute)
- various universities

Main objective of EMP and ACP is not to produce models, but to use models to perform basic research reported in

- peer-reviewed journal articles (special issues)
- books
- conference proceedings
- workshops

Training Requirements

- training up to the individual scientists and costs are covered under their own projects
- training time depends on the background of individual scientists and the particular model
- scientists develop their own code or adapt existing code when necessary to achieve scientific objectives of their projects

R&D Activities

EMP activities

- evaluate and improve the representation of topography in mesoscale models and its effect on simulations of vertical exchange processes for urban basins and valleys
- evaluate existing subgrid-scale turbulence parameterizations and develop improved treatments for the stable boundary layer
- compare simulated turbulence quantities with observations
- determine how results from DNS and LES can be "scaled-up" for use in mesoscale models

ACP activities

- determine chemical processes within pollutant plumes downwind of point sources (e.g. power plants) and urban areas
- fully couple meteorology, gas-phase chemistry, and aerosols to evaluate the effect of feedback processes associated with radiation and clouds